Cell cycle dynamics controls fluidity of the developing mouse neuroepithelium

Author:

Bocanegra-Moreno LauraORCID,Singh Amrita,Hannezo EdouardORCID,Zagorski MarcinORCID,Kicheva AnnaORCID

Abstract

AbstractAs organs are remodelled by morphogenetic changes and pattern formation during development, their material properties may change. To address whether and how this occurs in the mouse neural tube, we combined highly resolved mosaic analysis, biophysical modelling and perturbation experiments. We found that at early developmental stages the neuroepithelium surprisingly maintains both high junctional tension and high fluidity. This is achieved via a previously unrecognized mechanism in which interkinetic nuclear movements generate cell area dynamics that drive extensive cell rearrangements. Over time, the proliferation rate declines, effectively solidifying the tissue. Thus, unlike well-studied jamming transitions, the solidification we uncovered resembles a glass transition that depends on the dynamics of stresses generated by proliferation and differentiation. This new link between epithelial fluidity, interkinetic movements and cell cycle dynamics has implications for the precision of pattern formation and could be relevant to multiple developing tissues.

Publisher

Cold Spring Harbor Laboratory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3