Model-based hearing-enhancement strategies for cochlear synaptopathy pathologies

Author:

Drakopoulos FotiosORCID,Vasilkov Viacheslav,Osses Vecchi Alejandro,Wartenberg Tijmen,Verhulst Sarah

Abstract

AbstractIt is well known that ageing and noise exposure are important causes of sensorineural hearing loss, and can result in damage of the outer hair cells or other structures of the inner ear, including synaptic damage to the auditory nerve (AN), i.e., cochlear synaptopathy (CS). Despite the suspected high prevalence of CS among people with self-reported hearing difficulties but seemingly normal hearing, conventional hearing-aid algorithms do not compensate for the functional deficits associated with CS. Here, we present and evaluate a number of auditory signal-processing strategies designed to maximally restore AN coding for listeners with CS pathologies. We evaluated our algorithms in subjects with and without suspected age-related CS to assess whether physiological and behavioural markers associated with CS can be improved. Our data show that after applying our algorithms, envelope-following responses and perceptual amplitude-modulation sensitivity were consistently enhanced in both young and older listeners. Speech-in-noise intelligibility showed small improvements after processing but mostly for young normal-hearing participants, with median improvements of up to 8.3%. Since our hearing-enhancement strategies were designed to optimally drive the AN fibres, they were able to improve temporal-envelope processing for listeners both with and without suspected CS. Our proposed algorithms can be rapidly executed and can thus extend the application range of current hearing aids and hearables, while leaving sound amplification unaffected.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3