Exploring human mixing patterns based on time use and social contact data and their implications for infectious disease transmission models

Author:

Hoang Thang VanORCID,Willem LanderORCID,Coletti PietroORCID,Kerckhove Kim Van,Minnen Joeri,Beutels PhilippeORCID,Hens NielORCID

Abstract

AbstractBackgroundThe increasing availability of data on social contact patterns and time use provides invaluable information for studying transmission dynamics of infectious diseases. Social contact data provide information on the interaction of people in a population whereas the value of time use data lies in the quantification of exposure patterns. Both have been used as proxies for transmission risks within in a population and the combination of both sources has led to investigate which kind of social encounters are most relevant to describe transmission risk.MethodsWe used social contact and time use data from 1707 participants from a survey conducted in Flanders, Belgium in 2010-2011. We calculated weighted exposure time and social contact matrices to analyze age- and gender-specific mixing patterns and to quantify behavioral changes by distance from home. We compared the value of both data sources, individually and combined, for explaining seroprevalence and incidence data on parvovirus-B19, Varicella-Zoster virus (VZV) and influenza-like illnesses (ILI), respectively.ResultsAssortative mixing and inter-generational interaction is more pronounced in the exposure matrix due to the high proportion of time spent at home. This pattern is less pronounced in the social contact matrix, which is more impacted by the reported contacts at school and work. The average number of contacts declined with distance, however on the individual-level, we observed an increase in the number of contacts and the transmission potential by distance when travelling.We found that both social contact data and time use data provide a good match with the seroprevalence and incidence data at hand. When comparing the use of different combinations of both data sources, we found that the social contact matrix based on close contacts of at least 4 hours appeared to be the best proxy for parvovirus-B19 transmission. Social contacts and exposure time were both on their own able to explain VZV seroprevalence data though combining both scored best. Compared with the contact approach, the time use approach provided the better fit to the ILI incidence data.ConclusionsOur work emphasises the common and complementary value of time use and social contact data for analysing mixing behavior and infectious disease transmission. We derived spatial, temporal, age-, gender- and distance-specific mixing patterns, which are informative for future modelling studies.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3