Imbalance of Neuregulin1-ErbB2/3 signaling underlies altered myelin homeostasis in models of Charcot-Marie-Tooth disease type 4H

Author:

El-Bazzal Lara,Ghata Adeline,Estève Clothilde,Quintana Patrice,Roeckel-Trévisiol Nathalie,Lembo Frédérique,Lenfant Nicolas,Mégarbané Andre,Borg Jean-Paul,Lévy Nicolas,Bartoli Marc,Poitelon Yannick,Roubertoux Pierre L.,Delague ValérieORCID,Bernard-Marissal NathalieORCID

Abstract

AbstractCharcot Marie Tooth disease (CMT) is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells (SC) of the peripheral nervous system, and caused by more than 100 genes. We previously identified mutations in FGD4, as responsible for CMT4H, an autosomal recessive demyelinating form of CMT. FGD4 encodes FRABIN a GDP/GTP nucleotide exchange factor (GEF), particularly for the small GTPase cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in SC myelination, we generated a knock-out mouse model, with conditional ablation of fgd4 in SC. We showed that the specific deletion of FRABIN in SCs leads to aberrant myelination in vitro, in dorsal root ganglion (DRG)/SCs cocultures as well in vivo, in distal sciatic nerves. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ErbB2/3 signaling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that loss of FRABIN impairs endocytic trafficking which may contribute to the defective NRG1 type III/ErbB2/3 signaling and myelination. Finally, we showed that the reestablishment of proper levels of the NRG1 type III/ErbB2/3 pathway using Niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ErbB2/3 NRG1signaling and myelination and opens future therapeutic strategies based on the modulation of NRG1 type III/ErbB2/3 NRG1to reduce CMT4H pathology and more generally others demyelinating CMT.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3