Abstract
AbstractUnderstanding how connective tissue cells respond to mechanical stimulation is important to human health and disease processes in musculoskeletal diseases. Injury to articular cartilage is a key risk factor in predisposition to osteoarthritis. Here we identified a ubiquitin signature that is unique to injured articular cartilage tissue (the “injury ubiquitinome”). A total of 408 ubiquitinated peptides mapped to 114 proteins were identified, with an enrichment of ubiquitinated peptides of proteins involved in protein processing in the endoplasmic reticulum(ER), also known as the ER-associated degradation(ERAD) response, including YOD1, BRCC3, ATXN3 and USP5 as well as the ER stress regulators, RAD23B, VCP/p97 and Ubiquilin 1. Enrichment of these proteins suggested an injury-induced ER stress response and, for instance, ER stress markers DDIT3/CHOP and BIP/GRP78 were upregulated following cartilage injury on the protein and gene expression levels. Similar ER stress induction was also observed in response to tail fin injury in zebrafish larvae, suggesting a generic response to tissue injury. Furthermore, a rapid increase in global DUB activity following injury and significant activity in human osteoarthritic cartilage was observed using DUB specific activity probes. Inhibition of DUBs using a broad-spectrum inhibitor caused a reduction in the injury-induced inflammatory response in a zebrafish tail fin injury model. These results implicate the involvement of ubiquitination events and activation of a set of DUBs and ER stress regulators in cellular responses to cartilage tissue injury and osteoarthritis. This link through the ERAD pathway makes this protein set attractive for further investigation in in vivo models of tissue injury and for targeting in osteoarthritis and related musculoskeletal diseases.
Publisher
Cold Spring Harbor Laboratory