High-titer production of aromatic amines in metabolically engineered Escherichia coli

Author:

Yang Taiwei,Wu Peiling,Zhang Yang,Yuan JifengORCID

Abstract

ABSTRACTAromatic amines are widely used in the pharmaceutical industry. Here, we reported the establishment of a bacterial platform for synthesizing three types of aromatic amines, namely, tyramine, dopamine, and phenylethylamine. Firstly, we expressed aromatic amino acid decarboxylase from Enterococcus faecium (pheDC) in an Escherichia coli strain with an increased shikimate (SHK) pathway flux toward L-tyrosine or L-phenylalanine synthesis. We found that glycerol served as a better carbon source than glucose, resulting in 940±46 mg/L tyramine from 4% glycerol. Next, the genes of lactate dehydrogenase (ldhA), formate acetyltransferase (pflB), phosphate acetyltransferase (pta), and alcohol dehydrogenase (adhE) were deleted to mitigate the fermentation byproduct formation. The tyramine level was further increased to 1.965±0.205 g/L in shake flasks, corresponding to 2.1 times improvement compared with that of the parental strain. By using a similar strategy, we also managed to produce 703±21 mg/L dopamine and 555±50 mg/L phenethylamine. In summary, we have demonstrated that the knockout of ldhA-pflB-pta-adhE is an effective strategy in improving aromatic amine productions, and achieved the highest aromatic amine titers in E. coli under shake flasks reported to date.Key pointsAromatic amino acid decarboxylase from E. faecium was used for aromatic amine production; ldhA, pflB, pta together with adhE were deleted to mitigate the fermentation byproduct formation; Our work represented the best aromatic amine titers reported in E. coli under shake flasks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3