Effects of Neonicotinoid Seed Treatments on Soil Microbial Gene Expression Vary with Time in an Agricultural Ecosystem

Author:

Parizadeh MonaORCID,Mimee Benjamin,Kembel Steven W.ORCID

Abstract

ABSTRACTNeonicotinoids, a class of systemic insecticides, have been widely used for decades against various insect pests. Past studies have reported non-target effects of neonicotinoids on some beneficial macro- and micro-organisms. Given the crucial role that the soil microbiota plays in sustaining soil fertility, it is critical to understand how microbial taxonomic composition and gene expression respond to neonicotinoid exposure. To date, few studies have focused on this question, and these studies have evaluated the shifts in soil microbial taxonomic composition or used soil biochemical analyses to assess the changes in microbial functions. In this study, we have applied a metatranscriptomic approach to quantify the variability in soil microbial gene expression in a two-year soybean/corn crop rotation in Quebec, Canada. We identified weak and temporally inconsistent effects of neonicotinoid application on soil microbial gene expression, as well as a strong temporal variation in soil microbial gene expression among months and years. Neonicotinoid seed treatment altered the expression of a small number of microbial genes, including genes associated with heat shock proteins, regulatory functions, metabolic processes and DNA repair. These changes in gene expression varied during the growing season and between years. Overall, the composition of soil microbial expressed genes seems to be more resilient and less affected by neonicotinoid application than soil microbial taxonomic composition. Our study is among the first to document the effects of neonicotinoid seed treatment on microbial gene expression and highlights the strong temporal variability of soil microbial gene expression and its responses to neonicotinoid seed treatments.IMPORTANCEThis work provides the first example of the impacts of neonicotinoid seed treatment on community-wide soil microbial gene expression in an experimental design representing real farming conditions. Neonicotinoid pesticides have attracted a great deal of attention in recent years due to their potential non-target impacts on ecological communities and their functions. Our paper represents the first use of metatranscriptomic sequencing to offer real-time and in-depth insights into the non-target effects of this pesticide on soil microbial gene expression and on potentially beneficial soil microorganisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3