scRNA-sequencing reveals subtype-specific transcriptomic perturbations in DRG neurons of Pirt-EGFPf mice in neuropathic pain condition

Author:

Zhang ChiORCID,Hu Ming-Wen,He Shao-Qiu,Wang Xue-WeiORCID,Cao XuORCID,Zhou Feng-Quan,Qian Jiang,Guan YunORCID

Abstract

AbstractFunctionally distinct subtypes/clusters of dorsal root ganglion (DRG) neurons, which differ in soma size and neurochemical properties, may play different roles in nerve regeneration and pain. However, details about transcriptomic changes in different neuronal subtypes under maladaptive neuropathic pain conditions remain unclear. Chronic constriction injury (CCI) of the sciatic nerve represents a well-established model of neuropathic pain that mimics the etiology of clinical conditions. Therefore, we conducted single-cell RNA-sequencing (scRNA-seq) to characterize subtype-specific perturbations of transcriptomes in lumbar DRG neurons 7 days after sciatic CCI. By using Pirt-EGFPf mice that selectively express enhanced green fluorescent protein in DRG neurons, we established a highly efficient purification process to enrich neurons for scRNA-seq. We observed a loss of marker genes in injured neurons of 12 standard neuronal clusters, and the emergence of four prominent CCI-induced clusters at this peak-maintenance phase of neuropathic pain. Importantly, a portion of injured neurons from a subset of the 12 standard clusters (NP1, PEP5, NF1, and NF2) were spared from injury-induced identity loss, suggesting subtype-specific transcriptomic changes in injured neurons. Moreover, uninjured neurons, which are necessary for mediating the evoked pain, also demonstrated subtype-specific transcriptomic perturbations in these clusters, but not others. Notably, male and female mice showed differential transcriptomic changes in multiple neuronal clusters after CCI, suggesting transcriptomic sexual dimorphism in primary sensory neurons after nerve injury. Collectively, these findings may contribute to the identification of new target genes and development of DRG neuron subtype-specific therapies for optimizing neuropathic pain treatment and nerve regeneration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3