Heterosis counteracts hybrid breakdown to forestall speciation by parallel natural selection

Author:

Thompson Ken A.ORCID,Schluter Dolph

Abstract

In contrast to ecological speciation, where reproductive isolation evolves as a consequence of divergent natural selection, speciation by parallel natural selection has been less thoroughly studied. To test whether parallel evolution drives speciation, we leveraged the repeated evolution of benthic and limnetic ecotypes of threespine stickleback fish and estimated fitness for pure crosses and within-ecotype hybrids in semi-natural ponds and in laboratory aquaria. In ponds, we detected hybrid breakdown in both ecotypes but this was counterbalanced by heterosis and the strength of post-zygotic isolation was nil. In aquaria, we detected heterosis only in limnetic crosses and breakdown in neither ecotype, suggesting that hybrid incompatibilities are environment-dependent for both ecotypes and that heterosis is environment-dependent in benthic crosses. Heterosis and breakdown were 3× greater in limnetic crosses than in benthic crosses, contrasting the prediction that the fitness consequences of hybridization should be greater in crosses among more derived ecotypes. Consistent with a primary role for stochastic processes, patterns differed among crosses between populations from different lakes. Yet, we observed qualitatively similar patterns of heterosis and hybrid breakdown in benthic crosses and limnetic crosses when averaging the lake pairs, suggesting that the outcome of hybridization is repeatable in a general sense.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterosis counteracts hybrid breakdown to forestall speciation by parallel natural selection;Proceedings of the Royal Society B: Biological Sciences;2022-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3