A unified Method for assessing the Observability of Dynamic Complex Systems

Author:

Diaz Ochoa Juan G.ORCID

Abstract

AbstractProblemSystems theory applied to biology and medicine assumes that the complexity of a system can be described by quasi-generic models to predict the behavior of many other similar systems. To this end, the aim of various research works in systems theory is to developinductive modeling(based on data-intensive analysis) ordeductive modeling(based on the deduction of mechanistic principles) to discover patterns and identify plausible correlations between past and present events, or to connect different causal relationships of interacting elements at different scales and compute mathematical predictions. Mathematical principles assume that there are constant and observable universal causal principles that apply to all biological systems. Nowadays, there are no suitable tools to assess the soundness of these universal causal principles, especially considering that organisms not only respond to environmental stimuli (and inherent processes) across multiple scales but also integrate information about and within these scales. This implies an uncontrollable degree of uncertainty.MethodologyA method has been developed to detect the stability of causal processes by evaluating the information contained in the trajectories identified in a phase space. Time series patterns are analyzed using concepts from geometric information theory and persistent homology. In essence, recognizing these patterns in different time periods and evaluating their geometrically integrated information leads to the assessment of causal relationships. With this method, and together with the evaluation of persistent entropy in trajectories in relation to different individual systems, we have developed a method calledΦ-S diagramas a complexity measure to recognize when organisms follow causal pathways leading to mechanistic responses.ResultsWe calculated the Φ-S diagram of a deterministic dataset available in the ICU repository to test the method’s interpretability. We also calculated the Φ-S diagram of time series from health data available in the same repository. This includes patients’ physiological response to sport measured with wearables outside laboratory conditions. We confirmed the mechanistic nature of both datasets in both calculations. In addition, there is evidence that some individuals show a high degree of autonomous response and variability. Therefore, persistent individual variability may limit the ability to observe the cardiac response. In this study, we present the first demonstration of the concept of developing a more robust framework for representing complex biological systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3