Seed-competent tau monomer initiates pathology in PS19 tauopathy mice

Author:

Mirbaha Hilda,Chen Dailu,Mullapudi Vishruth,Terpack Sandi Jo,White Charles L.ORCID,Joachimiak Lukasz A.,Diamond Marc I.ORCID

Abstract

AbstractTau aggregation into ordered assemblies causes myriad neurodegenerative tauopathies. We previously reported that tau monomer exists in either inert (Mi) or seed-competent (Ms) conformational ensembles, and that Ms encodes strains, which are biologically active, self-propagating assemblies. We have previously isolated Ms from tauopathy brains, but it is unknown if disease begins with Ms formation followed by fibril assembly, or if Ms derives from fibrils and is an epiphenomenon. Consequently, we studied a tauopathy mouse model (PS19) that expresses full-length human (1N4R) tau containing a disease-associated mutation (P301S). Using tau repeat domain biosensor cells, we detected insoluble tau seeding activity at 2 months. We found insoluble tau protein assemblies by immunoblot at 3 months. We next immunopurified monomer from mice aged 1-6 weeks using size exclusion chromatography. We detected soluble seeding activity at 4 weeks, before insoluble material or larger assemblies, with assemblies ranging from n=1-3 tau units. By 5 and 6 weeks, large soluble assemblies had formed. This indicated the first detectable pathological forms of tau were Ms. We next tested for post-translational modifications of tau monomer from 1-6 weeks. We detected no phosphorylation unique to Ms in PS19 or Alzheimer’s disease brain. We conclude that tauopathy begins with formation of Ms monomer, whose activity is phosphorylation-independent. Ms self-assembles to form oligomers before it forms insoluble fibrils. The conversion of tau monomer from Mi to Ms thus constitutes the first detectable step in the initiation of tauopathy in this mouse model, with obvious implications for origins of disease in humans.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Neurodegenerative Tauopathies

2. Conformational diversity of wild-type Tau fibrils specified by templated conformation change;J. Biol. Chem. American Society for Biochemistry and Molecular Biology,2009

3. Propagation of tau misfolding from the outside to the inside of a cell;J. Biol. Chem. American Society for Biochemistry and Molecular Biology,2009

4. The expanding realm of prion phenomena in neurodegenerative disease

5. Distinct Tau Prion Strains Propagate in Cells and Mice and Define Different Tauopathies

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3