Temporal control of late replication and coordination of origin firing by self-stabilizing Rif1-PP1 hubs in Drosophila

Author:

Cho Chun-YiORCID,Seller Charles A.ORCID,O’Farrell Patrick H.ORCID

Abstract

ABSTRACTIn the metazoan S phase, coordinated firing of clusters of origins replicates different parts of the genome in a temporal program. Despite advances, neither the mechanism controlling timing nor that coordinating firing of multiple origins is fully understood. Rif1, an evolutionarily conserved inhibitor of DNA replication, recruits protein phosphatase 1 (PP1) and counteracts firing of origins by S-phase kinases. During the mid-blastula transition (MBT) in Drosophila embryos, Rif1 forms subnuclear hubs at each of the large blocks of satellite sequences and delays their replication. Each Rif1 hub disperses abruptly just prior to the replication of the associated satellite sequences. Here, we show that the level of activity of the S-phase kinase, DDK, accelerated this dispersal program, and that the level of Rif1-recruited PP1 retarded it. Further, Rif1-recruited PP1 supported chromatin association of nearby Rif1. This influence of nearby Rif1 can create a “community effect” counteracting kinase-induced dissociation such that an entire hub of Rif1 undergoes switch-like dispersal at characteristic times that shift in response to the balance of Rif1-PP1 and DDK activities. We propose a model in which the spatiotemporal program of late replication in the MBT embryo is controlled by self-stabilizing Rif1-PP1 hubs, whose abrupt dispersal synchronizes firing of associated late origins.SIGNIFICANCESeventy years ago, it was discovered that large domains of the eukaryotic genome replicate at different times. Detailed descriptions left significant questions unresolved. How are the many origins in the large domains coordinated to fire in unison? What distinguishes different domains and gives rise to a temporal program? When Drosophila embryos first establish late replication, an inhibitor of DNA replication, Rif1, forms hubs over domains of late replicating DNA. Rif1 recruits protein phosphatase 1 (PP1), which prevents kinases from dispersing Rif1 hubs or activating associated origins. When kinase activity eventually exceeds a hub-specific threshold, the self-stabilization of Rif1-PP1 breaks down, hubs disperse abruptly, and all associated origins are free to initiate.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3