Author:
Liu Yihao,Liu Shuya (Joshua),Sefati Shahriar,Tian Jing,Kheradmand Amir,Armand Mehran
Abstract
ABSTRACTTranscranial Magnetic Stimulation (TMS) is a neurostimulation technique based on the principle of electromagnetic induction of an electric field in the brain with both research and clinical applications. To produce an optimal neuro-modulatory effect, the TMS coil must be placed on the head and oriented accurately with respect to the region of interest within the brain. A robotic method can enhance the accuracy and facilitate the procedure for TMS coil placement. This work presents two system improvements for robot-assisted TMS (RA-TMS) application. Previous systems have used outside-in tracking method where a stationary external infrared (IR) tracker is used as a reference point to track the head and TMS coil position. This method is prone to losing track of the coil or the head if the IR camera is blocked by the robotic arm during its motion. To address this issue, we implemented an inside-out tracking method by mounting a portable IR camera on the robot end-effector. This method guarantees that the line of sight of the IR camera is not obscured by the robotic arm at any time during its motion. We also integrated a portable projection mapping device (PPMD) into the RA-TMS system to provide visual guidance during TMS application. PPMD can track the head via an IR tracker, and can project a planned contact point of the TMS coil on the head or overlay the underlying brain anatomy in real-time.
Publisher
Cold Spring Harbor Laboratory