Abstract
AbstractGenome-scale activity-based profiling of proteases requires identifying substrates that are specific to each individual protease. However, this process becomes increasingly difficult as the number of target proteases increases because most substrates are promiscuously cleaved by multiple proteases. We introduce a method – Substrate Libraries for Compressed sensing of Enzymes (SLICE) – for selecting complementary sets of promiscuous substrates to compile libraries that classify complex protease samples (1) without requiring deconvolution of the compressed signals and (2) without the use of highly specific substrates. SLICE ranks substrate libraries according to two features: substrate orthogonality and protease coverage. To quantify these features, we design a compression score that was predictive of classification accuracy across 140 in silico libraries (Pearson r = 0.71) and 55 in vitro libraries (Pearson r = 0.55) of protease substrates. We demonstrate that a library comprising only two protease substrates selected with SLICE can accurately classify twenty complex mixtures of 11 enzymes with perfect accuracy. We envision that SLICE will enable the selection of peptide libraries that capture information from hundreds of enzymes while using fewer substrates for applications such as the design of activity-based sensors for imaging and diagnostics.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献