Aβ/APP-induced hyperexcitability and dysregulation of homeostatic synaptic plasticity in models of Alzheimer’s disease

Author:

Martinsson I,Quintino L,Garcia MG,Konings SC,Torres-Garcia L,Svanbergson A,Stange O,England R,Deierborg T,Li JY,Lundberg C,Gouras GKORCID

Abstract

AbstractThe proper function of the nervous system is dependent on the appropriate timing of neuronal firing. Synapses continually undergo rapid activity-dependent modifications that require feedback mechanisms to maintain network activity within a window in which communication is energy efficient and meaningful. Homeostatic synaptic plasticity (HSP) and homeostatic intrinsic plasticity (HIP) are such negative feedback mechanisms. Accumulating evidence implicates that Alzheimer’s disease (AD)-related amyloid precursor protein (APP) and its cleavage product amyloid-beta (Aβ) play a role in the regulation of neuronal network activity, and in particular HSP. AD features impaired neuronal activity with regional early hyper-activity and Aβ-dependent hyperexcitability has also been demonstrated in AD transgenic mice. We demonstrate similar hyper-activity in AD transgenic neurons in culture that have elevated levels of both human APP and Aβ. To examine the individual roles of APP and Aβ in promoting hyperexcitability we used an APP construct that does not generate Aβ, or elevated Aβ levels independently of APP. Increasing either APP or Aβ in wild type (WT) neurons leads to increased frequency and amplitude of calcium transients. Since HSP/HIP mechanisms normally maintain a setpoint of activity, we examined whether homeostatic synaptic/intrinsic plasticity was altered in AD transgenic neurons. Using methods known to induce HSP/HIP, we demonstrate that APP protein levels are regulated by chronic modulation of activity and show that AD transgenic neurons have an impaired response to global changes in activity. Further, AD transgenic compared to WT neurons failed to adjust the length of their axon initial segments (AIS), an adaptation known to alter excitability. Thus, we present evidence that both APP and Aβ influence neuronal activity and that mechanisms of HSP/HIP are disrupted in neuronal models of AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3