Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation

Author:

Li JinORCID,Jamieson William D.ORCID,Dimitriou PantelitsaORCID,Xu WenORCID,Rohde Paul,Martinac BorisORCID,Baker MatthewORCID,Drinkwater Bruce W.ORCID,Castell Oliver K.ORCID,Barrow David A.ORCID

Abstract

AbstractIntracellular compartments are functional units that support the metabolic processes within living cells, through spatiotemporal regulation of chemical reactions and biological processes. Consequently, as a step forward in the bottom-up creation of artificial cells, building analogous intracellular architectures is essential for the expansion of cell-mimicking functionality. Herein, we report the development of a droplet laboratory platform to engineer customised complex emulsion droplets as a multicompartment artificial cell chassis, using multiphase microfluidics and acoustic levitation. Such levitated constructs provide free-standing, dynamic, definable droplet networks for the encapsulation and organisation of chemical species. Equally, they can be remotely operated with pneumatic, heating, and magnetic elements for post-processing, including the incorporation of membrane proteins; alpha-hemolysin; and large-conductance mechanosensitive channel (MscL) and their activation. The assembly of droplet networks is three-dimensionally patterned with fluidic inputs configurations determining droplet contents and connectivity. Whilst acoustic manipulation can be harnessed to reconfigure the droplet network in situ. In addition, a mechanosensitive channel, MscL, can be repeatedly activated and deactivated in the levitated artificial cell by the application of acoustic and magnetic fields to modulate membrane tension on demand. This offers possibilities beyond one-time chemically mediated activation to provide repeated, non-contact control of membrane protein function. Collectively, this will expand our capability to program and operate increasingly sophisticated artificial cells as life-like materials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3