The evolutionary history of mammoth wasps (Hymenoptera: Scoliidae)

Author:

Khouri Z.,Gillung J.P.ORCID,Kimsey L.S.

Abstract

AbstractScoliid wasps comprise a clade of aculeate insects whose larvae are parasitoids of scarabaeid beetle grubs. While scoliids have been studied and used as biological control agents, research into the group’s evolution, as well as the stability of scoliid taxonomy, has been limited by a lack of reliable phylogenies. We use ultraconserved element (UCE) data under concatenation and the multispecies coalescent to infer a phylogeny of the Scoliidae. In order to mitigate potential issues arising from model misspecification, we perform data filtering experiments using posterior predictive checks and matched-pairs tests of symmetry. Our analyses confirm the position of Proscolia as sister to all other extant scoliids. We also find strong support for a sister group relationship between the campsomerine genus Colpa and the Scoliini, rendering the Campsomerini non-monophyletic. Campsomerini excluding Colpa (hereafter Campsomerini sensu stricto) is inferred to be monophyletic, with the Australasian genus Trisciloa recovered as sister to the remaining members of the group. Out of nine genera in which more than one species was sampled, Campsomeriella, Dielis, Megascolia, and Scolia are inferred to be non-monophyletic. Analyses incorporating fossil data indicate an Early Cretaceous origin of the crown Scoliidae, with the split between Scoliini + Colpa and Campsomerini s.s. most probably occurring in the Late Cretaceous. Posterior means of Scoliini + Colpa and Campsomerini s.s. crown ages are estimated to be in the Paleogene, though age 95% HPD intervals extend slightly back past the K-Pg boundary, and analyses including fossils of less certain placement result in more posterior mass on older ages. Our estimates of the stem ages of Nearctic scoliid clades are consistent with dispersal across Beringia during the Oligocene or later Eocene. Our study provides a foundation for future research into scoliid wasp evolution and biogeography by being the first to leverage genome-scale data and model-based methods. However, the precision of our dating analyses is constrained by the paucity of well-preserved fossils reliably attributable to the scoliid crown group. Despite concluding that the higher-level taxonomy of the Scoliidae is in dire need of revision, we recommend that taxonomic changes be predicated on datasets that extend the geographic and taxonomic sampling of the current study.

Publisher

Cold Spring Harbor Laboratory

Reference110 articles.

1. Generalized affine gap costs for protein sequence alignment;Proteins: Structure, Function, and Bioinformatics,1998

2. Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. URL: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

3. Generic synopsis of Scoliidae (Hymenoptera;Scolioidea). Annales Historico Naturales-Musei Nationalis Hungarici,1996

4. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing

5. Betrem, J. G. (1965). The African Scoliids and their Affinities. In XIIth International Congress of Entomology (p. 120).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3