Spatial and Temporal Regulation of Parent-of-Origin Allelic Expression in the Endosperm

Author:

van Ekelenburg Yuri S.ORCID,Hornslien Karina S.ORCID,Van Hautegem TomORCID,Fendrych MatyášORCID,Van Isterdael GertORCID,Bjerkan Katrine N.ORCID,Miller Jason R.ORCID,Nowack Moritz K.ORCID,Grini Paul E.ORCID

Abstract

AbstractGenomic imprinting promotes differential expression of parental alleles in the endosperm of flowering plants, and is regulated by epigenetic modification such as DNA methylation and histone tail modifications in chromatin. After fertilization, the endosperm develops through a syncytial stage before it cellularizes and becomes a nutrient source for the growing embryo. Both in early and late endosperm development regional compartmentalization has been shown, and different transcriptional domains suggest divergent spatial and temporal regional functions. The analysis of the role of parent-of-origin allelic expression in the endosperm as a whole and also investigation of domain specific functions has been hampered by the availability of the tissue for high-throughput transcriptome analyses and contamination from surrounding tissue. Here we have used Fluorescence-Activated Nuclear Sorting (FANS) of nuclear targeted eGFP fluorescent genetic markers to capture parental specific allelic expression from different developmental stages and specific endosperm domains. This RNASeq approach allows us to successfully identify differential genomic imprinting with temporal and spatial resolution. In a systematic approach we report temporal regulation of imprinted genes in the endosperm as well as region specific imprinting in endosperm domains. Our data identifies loci that are spatially differentially imprinted in one domain of the endosperm while biparentally expressed in other domains. This suggests that regulation of genomic imprinting is dynamic and challenges the canonical mechanisms for genomic imprinting.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3