Interaction of surface topography and taper mismatch on head-stem modular junction contact mechanics during assembly in modern total hip replacement

Author:

Gustafson Jonathan A.ORCID,Mell Steven P.ORCID,Levine BrettORCID,Pourzal RobinORCID,Lundberg Hannah J.ORCID

Abstract

AbstractImplant failure due to fretting corrosion at the head-stem modular junction is an increasing problem in modular total hip arthroplasty. The effect of varying microgroove topography on modular junction contact mechanics has not been well characterized. The aim of this work was to employ a novel, microgrooved finite element (FEA) model of the hip taper interface and assess the role of microgroove geometry and taper mismatch angle on the modular junction mechanics during assembly. A two-dimensional, axisymmetric FEA model was created using a modern 12/14 taper design of a CoCrMo femoral head taper and Ti6Al4V stem taper. Microgrooves were modelled at the contacting interface of the tapers and varied based on height and spacing measurements obtained from a repository of measured retrievals. Additionally, taper angular mismatch between the head and stem was varied to simulate proximal- and distal-locked engagement. Forty simulations were conducted to parametrically evaluate the effects of microgroove surface topography and angular mismatch on predicted contact area, contact pressure, and equivalent plastic strain. Multiple linear regression analysis was highly significant (p < 0.001; R2 > 0.74) for all outcome variables. The regression analysis identified microgroove geometry on the head taper to have the greatest influence on modular junction contact mechanics. Additionally, there was a significant second order relationship between both peak contact pressure (p < 0.001) and plastic strain (p < 0.001) with taper mismatch angle. These modeling techniques will be used to identify the implant parameters that maximize taper interference strength via large in-silico parametric studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3