Sensory plasticity in a socially plastic bee

Author:

Boulton Rebecca AORCID,Field Jeremy

Abstract

AbstractThe social Hymenoptera have contributed much to our understanding of the evolution of sensory systems. Attention has focussed chiefly on how sociality and sensory systems have evolved together. In the Hymenoptera, the antennal sensilla are important for optimising the perception of olfactory social information. Social species have denser antennal sensilla than solitary species, which is thought to enhance social cohesion through nest-mate recognition. In the current study, we test whether sensilla numbers vary between populations of the socially plastic sweat bee Halictus rubicundus from regions that vary in climate and the degree to which sociality is expressed. We found region level differences in both olfactory and hygro/thermoreceptive sensilla numbers. We also found evidence that olfactory sensilla density is developmentally plastic: when we transplanted bees from Scotland to the south-east of England, their offspring (which developed in the south) had more olfactory hairs than the transplanted individuals themselves (which developed in Scotland). The transplanted bees displayed a mix of social (a queen plus workers) and solitary nesting, but neither individual nor nest phenotype was related to sensilla density. We suggest that this general, rather than caste-specific sensory plasticity provides a flexible means to optimise sensory perception according to the most pressing demands of the environment. Sensory plasticity may support social plasticity in H. rubicundus but does not appear to be causally related to it.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. The evolution of eusociality;Annual review of Ecology, Evolution and Systematics,1984

2. Plasticity and modulation of olfactory circuits in insects;Cell and Tissue Research,2021

3. Antennal sensilla of the weaver ant Oecophylla smaragdina (F.) – males and females sense differently;Indian Journal of Entomology,2019

4. Fitting Linear Fixed-Effects Models using lme4;Journal of statistical software,2015

5. Pupal developmental temperature and behavioral specialization of honeybee workers (Apis mellifera L.)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3