Abstract
AbstractMany everyday tasks require people to solve computationally complex problems. However, little is known about the effects of computational hardness on the neural processes associated with solving such problems. Here, we draw on computational complexity theory to address this issue. We performed an experiment in which participants solved several instances of the 0-1 knapsack problem, a combinatorial optimization problem, while undergoing ultra-high field (7T) functional magnetic resonance imaging (fMRI). Instances varied in two task-independent measures of intrinsic computational hardness: complexity and proof hardness. We characterise a network of brain regions whose activation was correlated with both measures but in distinct ways, including the anterior insula, dorsal anterior cingulate cortex and the intra-parietal sulcus/angular gyrus. Activation and connectivity changed dynamically as a function of complexity and proof hardness, in line with theoretical computational requirements. Overall, our results suggest that computational complexity theory provides a suitable framework to study the effects of computational hardness on the neural processes associated with solving complex cognitive tasks.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献