Diagnostic accuracy of chest X-ray interpretation for tuberculosis by three artificial intelligence-based software in a screening use-case: an individual patient meta-analysis of global data

Author:

Kik Sandra V.ORCID,Gelaw Sifrash M.,Ruhwald Morten,Song RinnORCID,Khan Faiz AhmadORCID,van Hest Rob,Chihota VioletORCID,Nhung Nguyen Viet,Esmail Aliasgar,Celina Garfin Anna Marie,Marks Guy B.,Gorbacheva Olga,Akkerman Onno W.ORCID,Moropane Kgaugelo,Ngoc Anh Le Thi,Dheda Keertan,Fox Greg J.,Marano Nina,Lönnroth Knut,Cobelens Frank,Benedetti AndreaORCID,Dewan Puneet,Ongarello Stefano,Denkinger Claudia M.ORCID

Abstract

AbstractBackgroundChest X-ray (CXR) screening is a useful diagnostic tool to test individuals at high risk of tuberculosis (TB), yet image interpretation requires trained human readers who are in short supply in many high TB burden countries. Therefore, CXR interpretation by computer-aided detection software (CAD) may overcome some of these challenges, but evidence on its accuracy is still limited.We established a CXR library with images and metadata from individuals and risk groups that underwent TB screening in a variety of countries to assess the diagnostic accuracy of three commercial CAD solutions through an individual participant meta-analysis.Methods and findingsWe collected digital CXRs and demographic and clinical data from 6 source studies involving a total of 2756 participants, 1753 (64%) of whom also had microbiological test information. All CXR images were analyzed with CAD4TB v6 (Delft Imaging), Lunit Insight CXR TB algorithm v4.9.0 (Lunit Inc.), and qXR v2 (Qure.ai) and re-read by an expert radiologist who was blinded to the initial CXR reading, the CAD scores, and participant information. While the performance of CAD varied across source studies, the pooled, meta-analyzed summary receiver operating characteristic (ROC) curves of the three products against a microbiological reference standard were similar, with area under the curves (AUCs) of 76.4 (95% CI 72.1-80.3) for CAD4TB, 83.3 (95% CI 78.4-87.2) for Lunit, and 76.4 (95% CI 72.1-80.3) for qXR. None of the CAD products, or the radiologists, met the targets for a triage test of 90% sensitivity and 70% specificity. At the same sensitivity of the expert radiologist (94.0%), all CAD had slightly lower point estimates for specificity (22.4% (95% CI 16.9-29.0) for CAD4TB, 34.6% (95% CI 25.3-45.1) for qXR, and 41.0% (95% CI 30.1-53.0) for Lunit compared to 45.6% for the expert radiologist). At the same specificity of 45.6%, all CAD products had lower point estimates for sensitivity but overlapping CIs with the sensitivity estimate of the radiologist.ConclusionsWe showed that, overall, three commercially available CAD products had a reasonable diagnostic accuracy for microbiologically confirmed pulmonary TB and may achieve a sensitivity and specificity that approximates those of experienced radiologists. While threshold setting and cost-effectiveness modelling are needed to inform the optimal implementation of CAD products as part of screening programs, the availability of CAD will assist in scaling up active case finding for TB and hence contribute to TB elimination in these settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3