Parallel multicopy-suppressor screens reveal convergent evolution of phage-encoded single gene lysis proteins

Author:

Adler Benjamin A.ORCID,Chamakura KarthikORCID,Carion Heloise,Krog Jonathan,Deutschbauer Adam M.ORCID,Young Ryland FORCID,Mutalik Vivek K.ORCID,Arkin Adam P.ORCID

Abstract

AbstractIn contrast to dsDNA phages where multiple proteins are involved in programmed host lysis, lysis in ssRNA Fiersviridae and ssDNA Microviridae phages requires only a single gene (sgl for single gene lysis) to meet the size constraints of some of the smallest genomes in the biosphere. To achieve lysis, Sgl proteins exploit evolutionary “weak spots” in bacterial cell wall biogenesis. In several cases, this is done by inhibiting specific steps in Lipid II synthesis. Recently metatranscriptomics has revealed thousands of novel ssRNA phage genomes, each of which must carry at least one sgl gene. Determining the targets of these Sgl proteins could reveal novel vulnerabilities in bacterial envelope biogenesis and may lead to new antibiotics. Here, we employ a high-throughput genetic screen to uncover genome-wide host suppressors of Sgl activity and apply it to a set of diverse Sgls with unknown molecular targets. In addition to validating known molecular mechanisms, we determined that the Sgl of PP7, an ssRNA phage of P. aeruginosa, targets MurJ, the flippase responsible for Lipid II export which was previously shown to be the target of the Sgl of coliphage M. These two Sgls, which are unrelated and predicted to have opposite membrane topology, thus represent a case of convergent evolution. Another set of Sgls which are thought to cause lysis without inhibiting cell wall synthesis elicit a common set of multicopy suppressors, suggesting these Sgls act by the same or similar mechanism.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3