Abstract
AbstractThe progression of the COVID-19 pandemic leads to the emergence of variants of concern (VOC), which may compromise the efficacy of the currently administered vaccines. Antigenic drift can potentially bring about a reduced protective T cell immunity and consequently to more severe disease manifestations. To assess this possibility, the T cell responses to the wild-type, Wuhan-1 SARS-CoV-2 ancestral spike protein and Omicron B.1.1.529 spike protein were compared. Accordingly, peripheral blood mononuclear cells (PBMC) were collected from 8 healthy volunteers 4-5 months following a third vaccination with BNT162b2, and stimulated with overlapping peptide libraries representing the spike of either the ancestral or Omicron SARS-CoV- 2 virus variants. Quantification of the specific T cells was carried out by a fluorescent ELISPOT assay, monitoring interferon-gamma (IFNg), interleukin-10 (IL-10) and interleukin-4 (IL-4) secreting cells. For all the examined individuals, comparable level of reactivity to both forms of spike protein were determined. In addition, a dominant Th1 response was observed, manifested mainly by IFNg secreting cells and only limited numbers of IL-10 and IL-4 secreting cells. The data demonstrates a stable T cell activity to the emerging Omicron variant in the tested individuals, therefore the protective immunity to the variant following BNT162b2 vaccination is not significantly affected.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献