Abstract
AbstractBased on a meta-analysis of human genome methylation data, we tested a theoretical model in which aging is explained by the redistribution of limited resources in cells between two main tasks of the organism: its self-sustenance based on the function of the housekeeping gene group (HG) and functional differentiation, provided by the (IntG) integrative gene group. A meta-analysis of methylation of 100 genes, 50 in the HG group and 50 in IntG, showed significant differences (p<0.0001) between our groups in the level of absolute methylation values of genes bodies and its promoters. We showed a reliable decrease of absolute methylation values in IntG with rising age in contrast to HG, where this level remained constant. The one-sided decrease in methylation in the IntG group is indirectly confirmed by the dispersion data analysis, which also decreased in the genes of this group. The imbalance between HG and IntG in methylation levels suggests that this IntG-shift is a side effect of the ontogenesis grownup program and the main cause of aging. The theoretical model of functional genome division also suggests the leading role of slow dividing and post mitotic cells in triggering and implementing the aging process.
Publisher
Cold Spring Harbor Laboratory