Task-based fMRI in early Multiple Sclerosis: what is the best head motion correction approach?

Author:

Soares Júlia F.ORCID,Abreu Rodolfo,Cláudia Lima Ana,Sousa Lívia,Batista Sónia,Castelo-Branco MiguelORCID,Duarte João ValenteORCID

Abstract

AbstractFunctional MRI (fMRI) is one of the most common brain imaging modalities used for understanding brain organization and connectivity abnormalities associated with multiple sclerosis (MS). The fMRI signal is highly perturbed by head motion, which degrades data quality and influences all image-derived metrics. Numerous correction approaches have been proposed over the years to overcome the problems induced by head motion, however, despite a few efforts, there are still current and persistent controversies regarding the best correction strategy. The lack of a systematic comparison between different correction approaches motivates the search for optimal correction models, particularly in studies with clinical populations prone to characterize by higher motion. Moreover, motion correction strategies gain more relevance in task-based designs, which are less explored compared to resting-state and may have a crucial role in describing the functioning of the brain and highlighting specific connectivity changes.We acquired fMRI data from a group of patients with early MS and matched healthy controls (HC) during performance of a visual task, characterized motion in both groups, and compared the most used motion correction methods. We compared task-activation metrics obtained from models without motion correction, models containing 6 or 24 motion parameters (MPs) as nuisance regressors, models containing 6 or 24 MPs and motion outliers detected with FD or DVARS as nuisance regressors (scrubbing) and models with 6 or 24 MPs where motion outliers were corrected through volume interpolation. To our knowledge, volume interpolation is a frequently used approach but was never compared with other existent methods.Our results showed that there were no differences in motion between groups, suggesting that recently diagnosed MS patients do not present problematic motion. In general, models with 6 MPs present higher Z-scores than models with 24 MPs, suggesting the 6 MPs as the best trade-off between motion correction and preservation of valuable information. However, correction approaches differ between groups, regarding the combination of MPs with correction of motion outliers. Models with 6 MPs and outliers’ volume interpolation or scrubbing with FD presented higher Z-scores in the MS group, while models with 6 MPs and scrubbing with DVARS or volume interpolation were the best combinations for the HC group. Differences between groups in motion correction strategies draw attention to the intrinsic impact of MS on fMRI analyses, which should be carefully addressed.This work paves the way towards finding an optimal motion correction strategy, which is required to improve the accuracy of fMRI analyses, crucially in clinical studies in MS and other patient populations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3