Author:
Kaspersetz Lucas,Waldburger Saskia,Schermeyer M.-Therese,Riedel Sebastian L.,Groß Sebastian,Neubauer Peter,Cruz-Bournazou M.-Nicolas
Abstract
Biotechnological processes development is challenging due to the sheer variety of process parameters. For efficient upstream development parallel cultivation systems have proven to reduce costs and associated timelines successfully, while offering excellent process control. However, the degree of automation of such small scale systems is comparably low and necessary sample analysis requires manual steps. Although the subsequent analysis can be performed in a high-throughput manner, the integration of analytic devices remains challenging. Especially, when cultivation and analysis laboratories are spatially separated. Mobile robots offer a potential solution, but the implementation in research laboratories is not widely adopted. Our approach demonstrates the integration of a small scale cultivation system into a liquid handling station for an automated sample procedure. The samples are transferred via a mobile robotic lab assistant and subsequently analysed by a high-throughput analyzer. The process data is stored in a centralized database. The mobile robotic workflow guarantees a flexible solution for device integration and facilitates automation. Restrictions regarding spatial separation of devices are circumvented, enabling a modular platform throughout different laboratories. The presented cultivation platform is evaluated based on industrial relevant E. coli BW25113 high cell density fed-batch cultivation. Here its suitability for accelerating bioprocess development is proven. The necessary magnesium addition for reaching high cell densities in mineral salt medium is automated via a feedback operation loop. The feedback operation loop demonstrates the possibility for advanced control options. This study sets the foundation for a fully integrated facility with different cultivation scales sharing the same data infrastructure, where the mobile robotic lab assistant physically connects the devices.
Publisher
Cold Spring Harbor Laboratory