Three Reagents for in-Solution Enrichment of Ancient Human DNA at More than a Million SNPs

Author:

Rohland Nadin,Mallick Swapan,Mah Matthew,Maier Robert,Patterson Nick,Reich David

Abstract

In-solution enrichment for hundreds of thousands of single nucleotide polymorphisms (SNPs) has been the source of >70% of all genome-scale ancient human DNA data published to date. This approach has made it possible to generate data for one to two orders of magnitude lower cost than random shotgun sequencing, making it economical to study ancient samples with low proportions of human DNA, and increasing the rate of conversion of sampled remains into working data thereby facilitating ethical stewardship of human remains. So far, nearly all ancient DNA data obtained using in-solution enrichment has been generated using a set of bait sequences targeting about 1.24 million SNPs (the ‘1240k reagent’). These sequences were published in 2015, but synthesis of the reagent has been cost-effective for only a few laboratories. In 2021, two companies made available reagents that target the same core set of SNPs along with supplementary content. Here, we test the properties of the three reagents on a common set of 27 ancient DNA libraries across a range of richness of DNA content and percentages of human molecules. All three reagents are highly effective at enriching many hundreds of thousands of SNPs. For all three reagents and a wide range of conditions, one round of enrichment produces data that is as useful as two rounds when tens of millions of sequences are read out as is typical for such experiments. In our testing, the “Twist Ancient DNA” reagent produces the highest coverages, greatest uniformity on targeted positions, and almost no bias toward enriching one allele more than another relative to shotgun sequencing. Allelic bias in 1240k enrichment has made it challenging to carry out joint analysis of these data with shotgun data, creating a situation where the ancient DNA community has been publishing two important bodes of data that cannot easily be co-analyzed by population genetic methods. To address this challenge, we introduce a subset of hundreds of thousands of SNPs for which 1240k data can be effectively co-analyzed with all other major data types.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3