Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes
Author:
Meister Michael T.ORCID, Groot Koerkamp Marian J. A., de Souza Terezinha, Breunis Willemijn B., Frazer-Mendelewska Ewa, Brok Mariël, DeMartino Jeff, Manders Freek, Calandrini Camilla, Kerstens Hinri H. D., Janse Alex, Dolman M. Emmy M., Eising Selma, Langenberg Karin P. S., van Tuil Marc, Knops Rutger R. G., van Scheltinga Sheila Terwisscha, Hiemcke-Jiwa Laura S., Flucke Uta, Merks Johannes H. M., van Noesel Max M., Tops Bastiaan B. J., Hehir-Kwa Jayne Y., Kemmeren Patrick, Molenaar Jan J., van de Wetering Marc, van Boxtel Ruben, Drost Jarno, Holstege Frank C. P.ORCID
Abstract
SummaryRhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here we describe the generation of a collection of pediatric RMS tumor organoid (tumoroid) models comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within four to eight weeks, indicating the feasibility of personalized drug screening. Molecular, genetic and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to six months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions.
Publisher
Cold Spring Harbor Laboratory
Reference75 articles.
1. Abdullah, K.G. , Bird, C.E. , Buehler, J.D. , Gattie, L.C. , Savani, M.R. , Sternisha, A.C. , Xiao, Y. , Levitt, M.M. , Hicks, W.H. , Li, W. , et al. (2021). Establishment of patient-derived organoid models of lower grade glioma. Neuro. Oncol. 2. Acanda De La Rocha, A.M. , Fader, M. , Coats, E.R. , Espinal, P.S. , Berrios, V. , Saghira, C. , Sotto, I. , Shakya, R. , Janvier, M. , Khatib, Z. , et al. (2021). Clinical Utility of Functional Precision Medicine in the Management of Recurrent/Relapsed Childhood Rhabdomyosarcoma. JCO Precis. Oncol. 1659–1665. 3. The repertoire of mutational signatures in human cancer 4. Amary, M.F.C. , Berisha, F. , Bernardi, F.D.C. , Herbert, A. , James, M. , Reis-Filho, J.S. , Fisher, C. , Nicholson, A.G. , Tirabosco, R. , Diss, T.C. , et al. (2007). Detection of SS18-SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms: analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools for synovial sarcoma. Mod. Pathol. 2007 204 20, 482–496. 5. Inhibition of the Notch-Hey1 Axis Blocks Embryonal Rhabdomyosarcoma Tumorigenesis
|
|