Duplication and overexpression of the genes encoding a beta 1,3-glucan synthase confer the intrinsic resistance to echinocandin in Mucor circinelloides

Author:

Garcia Alexis,Huh Eun Young,Lee Soo Chan

Abstract

ABSTRACTProcedures such as solid organ transplants and cancer treatments can leave many patients in an immunocompromised state resulting in an increased susceptibility to opportunistic diseases including fungal infections. Mucormycosis infections are continually emerging and pose a serious threat to immunocompromised patients. Currently there has been a sharp increase in mucormycosis cases as a secondary infection in patients battling SARS-CoV-2 infections. Mucorales fungi are notorious for presenting resistance to most antifungal drugs. The absence of effective means to treat these infections results in mortality rates approaching 100% in cases of disseminated infection. One of the most effective antifungal drug classes currently available are echinocandins. Echinocandins seem to be efficacious in treatment of many other fungal infections. Unfortunately, susceptibility testing has found that echinocandins have no to little effect on Mucorales. In this study, we found that the model Mucorales Mucor circinelloides genome carries three copies of the genes encoding for the echinocandin β-(1,3)-D-glucan synthase (fksA, fksB, and fksC). Interestingly, we revealed that exposing M. circinelloides to micafungin significantly increased the expression of the fksA and fksB genes when compared to an untreated control. We further uncovered that the serine/threonine phosphatase calcineurin is responsible for the overexpression of fksA and fksB as deletion of calcineurin results in a decrease in expression of all three fks genes and a lower minimal inhibitory concentration (MIC) to micafungin. Taken together, this study demonstrates that the fks gene duplication and overexpression by calcineurin contribute to the intrinsic resistance to echinocandins in Mucor.IMPORTANCEThe recent emergence of mucormycosis cases in immunocompromised patients has become a more prevalent issue. The Mucorales fungi that cause these infections are known to be highly drug resistant, thus treatment options are limited and the mortalities of these types of infections remain unacceptably high. Echinocandins are one of the latest antifungal drugs developed to successfully treat fungal infections, but it remains unclear why Mucorales fungi are resistant to these treatments. In our study, we uncovered three copies of the genes (fks) encoding the drug target for echinocandins. Furthermore, we discovered that the serine-threonine phosphatase calcineurin is regulating the over-expression of these genes, which confers resistance. By inhibiting calcineurin we found that the expression of these drug targets decreases resulting in an increase in susceptibility to echinocandins both in vitro and in vivo

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3