Biogenesis and Function of c-type Cytochromes in the Methanogenic Archaeon, Methanosarcina acetivorans

Author:

Gupta DineshORCID,Shalvarjian Katie E.,Nayak Dipti D.ORCID

Abstract

AbstractC-type cytochromes (cyt c) are proteins that covalently bind heme and are integral to electron transport chains. A growing body of evidence suggests that cyt c play a vital role in both intra- and extra-cellular electron transfer processes in Archaea, especially in members that metabolize methane and other short chain alkanes. Elaborate mechanisms for the biogenesis of cyt c are known in Bacteria and Eukarya but this process remains largely uncharacterized in Archaea. Here, we have used the model methanogenic archaeon Methanosarcina acetivorans to characterize a distinct form of the system I cyt c maturation machinery (referred to as the Ccm machinery henceforth) that is broadly distributed in members of the Archaea. Phenotypic analyses of M. acetivorans mutants deficient in essential components of the Ccm machinery reveal that cyt c are broadly important for growth and methanogenesis, but the magnitude of their impact can vary substantially depending on the growth substrate. Heterologous expression of a synthetic operon with the Ccm machinery (CcmABCEF) from M. acetivorans is both necessary and sufficient for cyt c biogenesis in a non-native host (M. barkeri Fusaro) that is incapable of cyt c biogenesis. Even though components of the Ccm machinery are universally conserved across the Archaea, our evolutionary analyses indicate that different clades of Archaea acquired this pathway through multiple independent horizontal gene transfer events from different groups of Bacteria. Overall, we have demonstrated the convergent evolution of a novel Archaea-specific Ccm machinery for cyt c biogenesis and its role in methane metabolism.Significance StatementMicroorganisms belonging to the domain Archaea play an especially important role in regulating atmospheric methane levels. Specifically, methanogens are the primary source of biogenic methane and anaerobic methanotrophic archaea (ANME) consume a substantial proportion of methane released in marine sediments. Genomic studies have implicated a class of electron-transfer proteins called c-type cytochromes as being crucial in mediating archaeal methane metabolism in the environment. However, neither the biogenesis nor the role of c-type cytochromes in methane metabolism has ever been investigated. Here, we have used a model methanogen, Methanosarcina acetivorans, to characterize a distinct pathway for maturation of c-type cytochromes that seems to be uniformly conserved across the Archaea and have also identified substrate-specific functional roles for c-type cytochromes during methanogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3