Abstract
AbstractCellular-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 SARS-CoV-2-infected survivors over a one year post symptom onset (PSO) interval by ex vivo cytokine ELISpot assay. All subjects demonstrated SARS-CoV-2-specific IFN-γ, IL-2, and Granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (Nucleocapsid, Membrane, Spike) except Envelope, with GzmB > IL-2 > IFN-γ. Mathematical modeling predicted that: 1) cytokine responses peaked at 6 days for IFN-γ, 36 days for IL-2, and 7 days for GzmB, 2) severe illness was associated with reduced IFN-γ and GzmB, but increased IL-2 production rates, 3) males displayed greater production of IFN-γ, whereas females produced more GzmB. Ex vivo responses declined over time with persistence of IL-2 in 86% and of IFN-γ and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modelled to be 139 days (∼4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the Nucleocapsid and Membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent.ImportanceOur findings highlight the relative importance of SARS-CoV-2-specific GzmB-producing T cell responses in SARS-CoV-2 control, shared CD4 and CD8 immunodominant epitopes in seasonal coronaviruses or SARS-CoV-1, and indicate robust persistence of T cell memory at least one year after infection. Our findings should inform future strategies to induce T cell vaccines against SARS-CoV-2 and other coronaviruses.
Publisher
Cold Spring Harbor Laboratory