Increasing adult density compromises anti-bacterial defense in Drosophila melanogaster

Author:

Das Paresh NathORCID,Basu AabeerORCID,Prasad Nagaraj GuruORCID

Abstract

AbstractThe density-dependent prophylaxis hypothesis predicts that risk of pathogen transmission increases with increase in population density, and in response to this, organisms mount a prophylactic immune response when exposed to high density. This prophylactic response is expected to help organisms improve their chances of survival when exposed to pathogens. Alternatively, organisms living at high densities can exhibit compromised defense against pathogens due to lack of resources and density associated physiological stress; the density stress hypothesis. We housed adult Drosophila melanogaster flies at different densities and measured the effect this has on their post-infection survival and resistance to starvation. We find that flies housed at higher densities show greater mortality after being infected with bacterial pathogens, while also exhibiting increased resistance to starvation. Our results are more in line with the density-stress hypothesis that postulates a compromised immune system when hosts are subjected to high densities.

Publisher

Cold Spring Harbor Laboratory

Reference63 articles.

1. Estimating disease resistance in insects: phenoloxidase and lysozyme-like activity and disease resistance in the cricket Gryllus texensis

2. How should behavioural ecologists interpret measurements of immunity?;Animal behaviour,2004

3. The emergency life-history stage and immunity in the cricket, Gryllus texensis

4. Alboukadel Kassambara , Marcin Kosinski and Przemyslaw Biecek (2019). survminer: Drawing Survival Curves using ‘ggplot2’. R package version 0.4.6 https://CRAN.R-project.org/package=survminer

5. The population dynamics of microparasites and their invertebrate hosts

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3