Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks

Author:

Pushpakumara B.L.D. UthpalaORCID,Tandon KshitijORCID,Willis AnusuyaORCID,Verbruggen HeroenORCID

Abstract

AbstractInteractions between microalgae and bacteria can directly influence the global biogeochemical cycles but the majority of such interactions remain unknown. 16S rRNA gene-based co-occurrence networks have potential to help identify microalgal-bacterial interactions. Here, we used data from 10 Earth microbiome projects to identify potential microalgal-bacterial associations in aquatic ecosystems. A high degree of clustering was observed in microalgal-bacterial modules, indicating densely connected neighbourhoods.ProteobacteriaandBacteroidetespredominantly co-occurred with microalgae and represented hubs of most modules. Our results also indicated that species-specificity may be a global characteristic of microalgal associated microbiomes. Several previously known associations were recovered from our network modules, validating that biologically meaningful results can be inferred using this approach. A range of previously unknown associations were recognised such as co-occurrences ofBacillariophytawith unculturedPlanctomycetes OM190andDeltaproteobacteriaorderNB1-j. PlanctomycetesandVerrucomicrobiawere identified as key associates of microalgae due to their frequent co-occurrences with several microalgal taxa. Despite no clear taxonomic pattern, bacterial associates appeared functionally similar across different environments. To summarise, we demonstrated the potential of 16S rRNA gene-based co-occurrence networks as a hypothesis-generating framework to guide more focused research on microalgal-bacterial associations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3