In situ structure and priming mechanism of the rhoptry secretion system in Plasmodium revealed by cryo-electron tomography

Author:

Martinez MatthewORCID,Chen William DavidORCID,Cova Marta MendonçaORCID,Molnár Petra,Mageswaran Shrawan KumarORCID,Guérin AmandineORCID,Odom John Audrey R.ORCID,Lebrun Maryse,Chang Yi-WeiORCID

Abstract

AbstractApicomplexan parasites secrete the contents of rhoptries into host cells to permit their invasion and establishment of an infectious niche. The rhoptry secretory apparatus (RSA), which is critical for rhoptry secretion, was recently discovered in Toxoplasma and Cryptosporidium. It is positioned at the cell apex and associates with an enigmatic apical vesicle (AV), which docks one or two rhoptries at the site of exocytosis. The interplay among the rhoptries, the AV, and the parasite plasma membrane for secretion remains unclear. Moreover, it is unknown if a similar machinery exists in the deadly malaria parasite Plasmodium falciparum. In this study, we use in situ cryo-electron tomography to investigate the rhoptry secretion system in P. falciparum merozoites. We identify the presence of an RSA at the cell apex and a morphologically distinct AV docking the tips of the two rhoptries to the RSA. We also discover two new organizations: one in which the AV is absent with one of the two rhoptry tips docks directly to the RSA, and a second in which the two rhoptries fuse together and the common tip docks directly to the RSA. Interestingly, rhoptries among the three states show no significant difference in luminal volume and density, suggesting that the exocytosis of rhoptry contents has not yet occurred, and that these different organizations likely represent sequential states leading to secretion. Using subtomogram averaging, we reveal different conformations of the RSA structure corresponding to each state, including the opening of a gate-like density in the rhoptry-fused state. These conformational changes of the RSA uncover structural details of a priming process for major rhoptry secretion, which likely occur after initial interaction with a red blood cell. Our results highlight a previously unknown step in the process of rhoptry secretion and indicate a regulatory role for the conserved apical vesicle in host invasion by apicomplexan parasites.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. World malaria report 2021. (2021).

2. World Malaria Report 2020: 20 years of global progress and challenges. (2020).

3. Malaria: Biology and Disease

4. Lytic Cycle of Toxoplasma gondii: 15 Years Later

5. The Biology of the Intestinal Intracellular Parasite Cryptosporidium;Cell Host Microbe,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3