Multi-curve fitting and tubulin-lattice signal removal for structure determination of large microtubule-based motors

Author:

Chai PengxinORCID,Rao Qinhui,Zhang KaiORCID

Abstract

Revealing high-resolution structures of microtubule-associated proteins (MAPs) is critical for understanding their fundamental roles in various cellular activities, such as cell motility and intracellular cargo transport. Nevertheless, large molecular motors that dynamically bind and release microtubule networks are challenging for cryo-electron microscopy (cryo-EM). Traditional structure determination of MAPs bound to microtubules needs alignment information from the reconstruction of microtubules, which cannot be readily applied to large MAPs without a fixed binding pattern. Here, we developed a comprehensive approach to estimate the microtubule networks (multicurve fitting), model the tubulin-lattice signals, and remove them (tubulin-lattice subtraction) from the raw cryo-EM micrographs. The approach does not require an ordered binding pattern of MAPs on microtubules, nor does it need a reconstruction of the microtubules. We demonstrated the capability of our approach using the reconstituted outer-arm dynein bound to microtubule doublets. In addition, we applied our multi-curve fitting approach to other biological filaments and achieved accurate estimations. Our work provides a new tool to determine high-resolution structures of large MAPs bound to curved microtubule networks.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3