Factor VII activating protease (FSAP) inhibits the outcome of ischemic stroke in mouse models

Author:

Kim Jeong YeonORCID,Manna DipankarORCID,Leergaard Trygve B.ORCID,Kanse Sandip M.ORCID

Abstract

AbstractFactor VII activating protease (FSAP) is a circulating serine protease, and individuals with the Marburg I (MI) single nucleotide polymorphism (SNP), which results in an inactive enzyme, have an increased risk of stroke. The outcome of ischemic stroke is more marked in FSAP-deficient mice compared to their wild-type (WT) counterparts. Plasma FSAP levels are raised in patients as well as mice after stroke. In vitro, FSAP promotes fibrinolysis by cleavage of fibrinogen, activates protease-activated receptors and decreases the cellular cytotoxicity of histones. Since these are desirable properties in stroke treatment, we tested the effect of recombinant serine protease domain of FSAP (FSAP-SPD) on ischemic stroke in mice. A combination of tissue plasminogen activator (tPA) and FSAP-SPD enhanced clot lysis, improved microvascular perfusion and neurological outcome and reduced infarct volumes in a mouse model of thromboembolic stroke. In the tail bleeding model FSAP-SPD treatment provoked a faster clotting time indicating that it has a pro-coagulant effect that is described before. FSAP-SPD improved stroke outcome and diminished the negative effects of co-treatment with tPA in the transient middle cerebral artery occlusion model. The inactive MI-isoform of FSAP did not have any effects in either model. In mice with FSAP deficiency there were minor differences in the outcomes of stroke but the treatment with FSAP-SPD was equally effective. Thus, FSAP represents a promising novel therapeutic strategy in the treatment of ischemic stroke that requires further evaluation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3