Evolution ofDaphniapopulation dynamics following invasion by a non-native predator

Author:

Einum SigurdORCID,Ullern Emil R.,Walsh Matthew,Burton Tim

Abstract

AbstractPredators are frequently observed to cause evolutionary responses in prey phenotypes, which may, in turn, translate into evolutionary shifts in prey population dynamics. Although a link between predation and population growth has been demonstrated in experimental evolution studies, insights from natural populations are lacking.Here we tested for evolutionary changes in the population dynamics of the herbivorous water fleaDaphnia pulicariain response to the invasion of the predatory spiny water flea (Bythotrephes longimanus) in the Great Lakes region, USA. Using a resurrection ecological approach and a 3-month population growth experiment (in the absence of predation) we compared population dynamics in daphnia from pre- and post-invasion time periods.Post-invasion daphnia were able to maintain an overall higher population abundance throughout the growth experiment, both in terms of the number of individuals (28% higher) and total population biomass (33% higher). Estimation of population dynamics parameters from a theta-logistic model suggested that this was achieved through an increase in intrinsic population growth rate as well as increased carrying capacity.The observed difference in intrinsic rate of increase could not be predicted based on previous measurements of life-history traits in these clones. This indicates that care should be taken when extrapolating from a few life history traits measured in isolated individuals under controlled conditions to population dynamics.Whereas previous experimental evolution studies of predator-prey interactions have demonstrated that genotypes that have evolved under predation have inferior population growth when the predator is absent, this was not the case for theDaphnia. We suggest that complexities in ecological interactions of natural ecosystems, such as the potential for spatial and temporal avoidance of predation, makes it challenging to provide general predictions about evolutionary responses in population dynamics to predators.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3