Development, Structure, and Mechanism of Synthetic Antibodies that Target Claudin and Clostridium perfringens Enterotoxin Complexes

Author:

Orlando Benjamin J.,Dominik Pawel K.,Roy SouravORCID,Ogbu Chinemerem,Erramilli Satchal K.ORCID,Kossiakoff Anthony A.ORCID,Vecchio Alex J.ORCID

Abstract

ABSTRACTStrains of the Gram-positive bacterium Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflict millions of humans and domesticated animals annually by causing prevalent gastrointestinal illnesses. CpE’s C-terminal domain (cCpE) binds cell surface receptors then its N-terminal domain restructures to form a membrane-penetrating β-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are the receptors for CpE, and also control the architecture and function of cell/cell contacts called tight junctions that create barriers to intercellular transport of solutes. CpE binding disables claudin and tight junction assembly and induces cytotoxicity via β-pore formation, disrupting gut homeostasis. Here, we aimed to develop probes of claudin/CpE assembly using a phage display library encoding synthetic antigen-binding fragments (sFabs) and discovered two that bound complexes between human claudin-4 and cCpE. We established each sFab’s unique modes of molecular recognition, their binding affinities and kinetics, and determined structures for each sFab bound to ~35 kDa claudin-4/cCpE in three-protein comprised complexes using cryogenic electron microscopy (cryoEM). The structures reveal a recognition epitope common to both sFabs but also that each sFab distinctly conforms to bind their antigen, which explain their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in further binding changes. Together, these findings validate the structures and uncover the mechanism of targeting claudin-4/cCpE complexes by these sFabs. Based on these structural insights we generate a model for CpE’s cytotoxic claudin-bound β-pore that predicted that these two sFabs would not prevent CpE cytotoxicity, which we verify in vivo with a cell-based assay. This work demonstrates the development and targeting mechanisms of sFabs against claudin/cCpE that enable rapid structural elucidation of these small membrane protein complexes using a cryoEM workflow. It further provides a structure-based framework and therapeutic strategies for utilizing these sFabs as molecular templates to target claudin/CpE assemblies, obstruct CpE cytotoxicity, and treat CpE-linked gastrointestinal diseases that cause substantial economic and quality of life losses throughout the world.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3