Cell lineage specification during development of the anterior lateral plate mesoderm and forelimb field

Author:

Newton Axel HORCID,Williams Sarah MORCID,Major Andrew TORCID,Smith Craig AORCID

Abstract

AbstractThe lateral plate mesoderm (LPM) is a transient embryonic tissue that gives rise to a diverse range of mature cell types, including the cardiovascular system, the urogenital system, endoskeleton of the limbs, and mesenchyme of the gut. While the genetic processes that drive development of these tissues are well defined, the early cell fate choices underlying LPM development and specification are poorly understood. In this study, we utilize single-cell transcriptomics to define cell lineage specification during development of the anterior LPM and the forelimb field in the chicken embryo. We identify the molecular pathways directing differentiation of the aLPM towards a somatic or splanchnic cell fate, and subsequent emergence of the forelimb mesenchyme. We establish the first transcriptional atlas of progenitor, transitional and mature cell types throughout the early forelimb field and uncover the global signalling pathways which are active during LPM differentiation and forelimb initiation. Specification of the somatic and splanchnic LPM from undifferentiated mesoderm utilizes distinct signalling pathways and involves shared repression of early mesodermal markers, followed by activation of lineage-specific gene modules. We identify rapid activation of the transcription factor TWIST1 in the somatic LPM preceding activation of known limb initiation genes, such as TBX5, which plays a likely role in epithelial-to-mesenchyme transition of the limb bud mesenchyme. Furthermore, development of the somatic LPM and limb is dependent on ectodermal BMP signalling, where BMP antagonism reduces expression of key somatic LPM and limb genes to inhibit formation of the limb bud mesenchyme. Together, these findings provide new insights into molecular mechanisms that drive fate cell choices during specification of the aLPM and forelimb initiation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3