Abstract
AbstractAcross vertebrates, live-bearing has evolved at least 150 times from the ancestral state of egg-laying into a diverse array of forms and degrees of prepartum maternal investment. A key question is how this diversity of reproductive modes arose and whether reproductive diversification underlies species diversification? To test these questions, we evaluate the most basal jawed vertebrates, Chondrichthyans, which have one of the greatest ranges of reproductive and ecological diversity among vertebrates. We reconstructed the sequence of reproductive mode evolution across a time-calibrated molecular phylogeny of 610 chondrichthyans. We find that egg-laying is ancestral, and that live-bearing evolved at least seven times. Matrotrophy (i.e. additional maternal contributions) evolved at least 15 times, with evidence of one reversal. In sharks, transitions to live-bearing and matrotrophy are more prevalent in larger-bodied species in the tropics. Further, the evolution of live-bearing is associated with a near-doubling of the diversification rate, but, there is only a small increase in diversification associated with the appearance of matrotrophy. The chondrichthyan diversification and radiation, particularly throughout the shallow tropical shelf seas and oceanic pelagic habitats, appears to be associated with the evolution of live-bearing and the proliferation of a wide range of maternal investment in their developing offspring.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献