CRISPR/Cas9 knock-in strategy to evaluate phospho-regulation of SAMHD1

Author:

Schüssler Moritz,Rauch Paula,Schott Kerstin,Oo Adrian,Fuchs Nina Verena,Kim Baek,König Renate

Abstract

AbstractSterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a potent restriction factor for immunodeficiency virus 1 (HIV-1), active in myeloid and resting CD4+ T cells. As a dNTP triphosphate triphosphohydrolase (dNTPase), SAMHD1 is proposed to limit cellular dNTP levels correlating with inhibition of HIV-1 reverse transcription. The anti-viral activity of SAMHD1 is regulated by dephosphorylation of the residue T592. However, the impact of T592 phosphorylation on dNTPase activity is still under debate. Whether additional cellular functions of SAMHD1 impact anti-viral restriction is also not completely understood.We use BlaER1 cells as a novel human macrophage transdifferentiation model combined with CRISPR/Cas9 knock-in (KI) to study SAMHD1 mutations in a physiological context. Transdifferentiated BlaER1 cells, resembling primary human macrophages, harbor active dephosphorylated SAMHD1 that blocks HIV-1 reporter virus infection. Co-delivery of Vpx or CRISPR/Cas9-mediated SAMHD1 knock-out relieves the block to HIV-1. Using CRISPR/Cas9-mediated homologous recombination, we introduced specific mutations into the genomic SAMHD1 locus. Homozygous T592E mutation, but not T592A, leads to loss of HIV-1 restriction, confirming the role of T592 dephosphorylation in the regulation of anti-viral activity. However, T592E KI cells retain wild type dNTP levels, suggesting the antiviral state might not only rely on dNTP depletion.In conclusion, the role of the T592 phospho-site for anti-viral restriction was confirmed in an endogenous physiological context. Importantly, loss of restriction in T592E mutant cells does not correlate with increased dNTP levels, indicating that the regulation of anti-viral and dNTPase activity of SAMHD1 might be uncoupled.ImportanceSterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a potent anti-viral restriction factor, active against a broad range of DNA viruses and retroviruses. In myeloid and resting CD4+ T cells, SAMHD1 blocks reverse transcription of immunodeficiency virus 1 (HIV-1), not only inhibiting viral replication in these cell types, but also limiting the availability of reverse transcription products for innate sensing of HIV-1. Manipulating SAMHD1 activity could be an attractive approach to improve HIV-1 therapy or vaccination strategies. Anti-viral activity is strictly dependent on dephosphorylation of SAMHD1 residue T592, however the mechanistic consequence of T592 phosphorylation is still unclear. Here, we use BlaER1 cells as an alternative myeloid cell model in combination with CRISPR/Cas9-mediated KI to study the influence of SAMHD1 T592 phosphorylation on anti-viral restriction and control of cellular dNTP levels in an endogenous context. By using this novel approach, we were able to genetically uncouple SAMHD1’s anti-viral and dNTPase activity with regard to regulation by T592 phosphorylation. This suggests that SAMHD1 dNTPase activity may not exclusively be responsible for the anti-lentiviral activity of SAMHD1 in myeloid cells. In addition, our toolkit may inspire further genetic analysis and investigation of SAMHD1-mediated restriction, as wells as its cellular function and regulation, leading to a deeper understanding of SAMHD1 and HIV-1 biology.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A CRISPR-Cas Cure for HIV/AIDS;International Journal of Molecular Sciences;2023-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3