External control arm analysis: an evaluation of propensity score approaches, G-computation, and doubly debiased machine learning

Author:

Loiseau Nicolas,Trichelair Paul,He Maxime,Andreux Mathieu,Zaslavskiy Mikhail,Wainrib Gilles,Blum Michael G.B.ORCID

Abstract

AbstractBackgroundAn external control arm is a cohort of control patients that are collected from data external to a single-arm trial. To provide an unbiased estimation of efficacy, the clinical profiles of patients from single and external arms should be aligned, typically using propensity score approaches. There are alternative approaches to infer efficacy based on comparisons between outcomes of single-arm patients and machine-learning predictions of control patient outcomes. These methods include G-computation and Doubly Debiased Machine Learning (DDML) and their evaluation for ECA analysis is insufficient.MethodsWe consider both numerical simulations and a trial replication procedure to evaluate the different statistical approaches: propensity score matching, Inverse Probability of Treatment Weighting (IPTW), G-computation, and DDML. The replication study relies on five type 2 diabetes randomized clinical trials granted by the Yale University Open Data Access (YODA) project. From the pool of five trials, observational experiments are artificially built by replacing a control arm from one trial by an arm originating from another trial and containing similarly-treated patients.ResultsAmong the different statistical approaches, numerical simulations show that DDML has the smallest bias followed by G-computation. Ranking based on mean square error is different with G-computation always being among the lowest-error methods while DDML relative performance improves with increasing sample sizes. For hypothesis testing, DDML controls type-1 error and is conservative whereas G-computation and propensity score approaches can be liberal with type I errors ranging between 5% and 10% in some settings. G-computation is the best method in terms of statistical power, and DDML has comparable power at n = 1000 but its power is inferior to propensity score approaches at n = 250. The replication procedure also indicates that G-computation minimizes mean squared error while DDML has intermediate performances compared to G-computation and propensity score approaches. The confidence intervals of G-computation are the narrowest in lines with its liberal type I error whereas confidence intervals of DDML are the widest that confirms its conservative nature.ConclusionsFor external control arm analyses, methods based on outcome prediction models can reduce estimation error and increase statistical power compared to propensity score approaches.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3