Tissue volume estimation and age prediction using rapid structural brain scans

Author:

Hobday Harriet,Cole James H.ORCID,Stanyard Ryan A.,Daws Richard E.,Giampietro Vincent,O’Daly Owen,Leech Robert,Váša František

Abstract

AbstractThe multicontrast EPImix sequence generates 6 contrasts, including a T1-weighted scan, in ∼1 minute. EPImix shows comparable diagnostic performance to conventional scans under qualitative clinical evaluation, and similarities in simple quantitative measures including contrast intensity. However, EPImix scans have not yet been compared to standard MRI scans using established quantitative measures. In this study, we compared conventional and EPImix-derived T1-weighted scans of 64 healthy participants using tissue volume estimates and predicted brain-age. All scans were pre-processed using the SPM12 DARTEL pipeline, generating measures of grey matter, white matter and cerebrospinal fluid volume. Brain-age was predicted using brainageR, a Gaussian process regression model previously trained on a large sample of standard T1-weighted scans. Estimates of both global and voxel-wise tissue volume showed significantly similar results between standard and EPImix-derived T1-weighted scans. Brain-age estimates from both sequences were significantly correlated, although EPImix T1-weighted scans showed a systematic offset in predictions of chronological age. Supplementary analyses suggest that this is likely caused by the reduced field of view of EPImix scans, and the use of a brain-age model trained using conventional T1-weighted scans. However, this systematic error can be corrected using additional regression of T1-predicted brain-age onto EPImix-predicted brain-age. Finally, retest EPImix scans acquired for 10 participants demonstrated high test-retest reliability in all evaluated quantitative measurements. Quantitative analysis of EPImix scans holds potential to reduce scanning time, increasing participant comfort and reducing cost, as well as to support automation of scanning, utilising active learning for faster and individually-tailored (neuro)imaging.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. Toward Quantifying the Prevalence, Severity, and Cost Associated With Patient Motion During Clinical MR Examinations

2. Ashburner, J. , Barnes, G. , Chen, C.-C. , Daunizeau, J. , Flandin, G. , Friston, K. , Gitelman, D. , Glauche, V. , Henson, R. , Hutton, C. , Jafarian, A. , Kiebel, S. , Kilner, J. , Litvak, V. , Mattout, J. , Moran, R. , Penny, W. , Phillips, C. , Razi, A. , Stephan, K. , Tak, S. , Tyrer, A. , and Zeidman, P. (2014). SPM12 Manual. Wellcome Trust Centre for Neuroimaging, London.

3. Bethlehem, R. A. I. , Seidlitz, J. , White, S. R. , Vogel, J. W. , Anderson, K. , […], 3R-BRAIN, AIBL, Initiative, A. D. N., Investigators, A. D. R. W. B., BCP, U. M. N., Team, C., Cam-CAN , CCNP, COBRE, working Group, E. D. B. A., FinnBrain , Study, H. A. B., IMAGEN, KNE96, of Aging, T. M. C. S., NSPN, POND, Group, T. P.-A. R., VETSA, Bullmore, E. T. , and Alexander-Bloch, A. F. (2021). Brain charts for the human lifespan. bioRxiv, page 2021.06.08.447489.

4. Billot, B. , Robinson, E. , Dalca, A. V. , and Iglesias, J. E. (2020). Partial Volume Segmentation of Brain MRI Scans of any Resolution and Contrast. arXiv, 2004.10221:1–10.

5. Biondo, F. , Jewell, A. , Pritchard, M. , Aarsland, D. , Steves, C. J. , Mueller, C. , and Cole, J. H. (2021). Brain-age predicts sub-sequent dementia in memory clinic patients. medRxiv, page 2021.04.03.21254781.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3