Relaxed risk of predation drives parallel evolution of stickleback behaviour

Author:

Fraimout AntoineORCID,Päiviö Elisa,Merilä JuhaORCID

Abstract

AbstractThe occurrence of similar phenotypes in multiple independent populations (viz. parallel evolution) is a testimony of evolution by natural selection. Parallel evolution implies that populations share a common phenotypic response to a common selection pressure associated with habitat similarity. Examples of parallel evolution at the genetic and phenotypic levels are fairly common, but the driving selective agents often remain elusive. Similarly, the role of phenotypic plasticity in facilitating early stages of parallel evolution is unclear. We investigated whether the relaxation of predation pressure associated with the colonization of freshwater ponds by nine-spined sticklebacks (Pungitius pungitius) likely explains the divergence in complex behaviours between marine and pond populations, and whether this divergence is parallel. Using laboratory-raised individuals exposed to different levels of perceived predation risk, we calculated vectors of phenotypic divergence for four behavioural traits between habitats and predation risk treatments. We found a significant correlation between the directions of evolutionary divergence and phenotypic plasticity, suggesting that habitat divergence in behaviour is aligned with the response to relaxation of predation pressure. Finally, we show that this alignment is found across multiple pairs of populations, and that the relaxation of predation pressure has likely driven parallel evolution of behaviour in this species.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Adaptive individual variation in phenological responses to perceived predation levels;Nature Communications,2019

2. The Evolution of Predator-Prey Interactions: Theory and Evidence

3. SPLIT-CLUTCH IVF: A TECHNIQUE TO EXAMINE INDIRECT FITNESS CONSEQUENCES OF MATE PREFERENCES IN STICKLEBACKS

4. The Effect of Selection Environment on the Probability of Parallel Evolution

5. Fitting Linear Mixed-Effects Models Using lme4.”;Journal of Statistical Software,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3