CCPLS reveals cell-type-specific spatial dependence of transcriptomes in single cells

Author:

Tsuchiya TakahoORCID,Hori Hiroki,Ozaki HarukaORCID

Abstract

AbstractMotivationCell-cell communications regulate internal cellular states, e.g., gene expression and cell functions, and play pivotal roles in normal development and disease states. Furthermore, single-cell RNA sequencing methods have revealed cell-to-cell expression variability of highly variable genes (HVGs), which is also crucial. Nevertheless, the regulation on cell-to-cell expression variability of HVGs via cell-cell communications is still largely unexplored. The recent advent of spatial transcriptome methods has linked gene expression profiles to the spatial context of single cells, which has provided opportunities to reveal those regulations. The existing computational methods extract genes with expression levels influenced by neighboring cell types. However, limitations remain in the quantitativeness and interpretability: they neither focus on HVGs nor consider the effects of multiple neighboring cell types.ResultsHere, we propose CCPLS (Cell-Cell communications analysis by Partial Least Square regression modeling), which is a statistical framework for identifying cell-cell communications as the effects of multiple neighboring cell types on cell-to-cell expression variability of HVGs, based on the spatial transcriptome data. For each cell type, CCPLS performs PLS regression modeling and reports coefficients as the quantitative index of the cell-cell communications. Evaluation using simulated data showed our method accurately estimated the effects of multiple neighboring cell types on HVGs. Furthermore, applications to the two real datasets demonstrate that CCPLS can extract biologically interpretable insights from the inferred cell-cell communications.AvailabilityThe R package is available at https://github.com/bioinfo-tsukuba/CCPLS. The data are available at https://github.com/bioinfo-tsukuba/CCPLS_paper.Contactharuka.ozaki@md.tsukuba.ac.jpSupplementary informationSupplementary data are available at Bioinformatics online.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3