Author:
Myers Ronald J,Fichman Yosef,Stacey Gary,Mittler Ron
Abstract
ABSTRACTMechanical wounding occurs in plants during biotic (e.g., herbivore or pathogen attack) or abiotic (e.g., wind damage or freezing) stresses and is associated with the activation of multiple signaling pathways. These initiate many wound responses at the wounded tissues, as well as trigger long-distance signaling pathways that activate wound responses in tissues that were not affected by the initial wounding event (termed ‘systemic wound response’). Among the different systemic signals activated by wounding are electric signals, calcium and reactive oxygen species (ROS) waves, and different plant hormones such as jasmonic acid. The release of glutamate from cells at the wounded tissues was recently proposed to trigger several different systemic signal transduction pathways via glutamate-like receptors (GLRs). However, the role of another important compound released from cells during wounding (i.e., extracellular ATP; eATP) in triggering systemic responses is not clear. Here we show that eATP that accumulates in wounded leaves and is sensed by the purinoreceptor kinase P2K is required for the activation of the ROS wave during wounding. Application of eATP to unwounded leaves triggered the ROS wave, and the activation of the ROS wave by wounding or eATP application was suppressed in mutants deficient in P2K (i.e., p2k1-3, p2k2, and p2k1-3p2k2). In addition, the expression of several systemic wound response transcripts was suppressed in mutants deficient in P2K during wounding. Our findings reveal that in addition to sensing glutamate via GLRs, eATP sensed by P2Ks is playing a key role in the triggering of systemic wound responses in plants.One sentence summaryExtracellular ATP plays an important role in triggering the ROS wave and systemic transcriptomics responses during wounding.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献