Extracellular ATP plays an important role in systemic wound response activation

Author:

Myers Ronald J,Fichman Yosef,Stacey Gary,Mittler Ron

Abstract

ABSTRACTMechanical wounding occurs in plants during biotic (e.g., herbivore or pathogen attack) or abiotic (e.g., wind damage or freezing) stresses and is associated with the activation of multiple signaling pathways. These initiate many wound responses at the wounded tissues, as well as trigger long-distance signaling pathways that activate wound responses in tissues that were not affected by the initial wounding event (termed ‘systemic wound response’). Among the different systemic signals activated by wounding are electric signals, calcium and reactive oxygen species (ROS) waves, and different plant hormones such as jasmonic acid. The release of glutamate from cells at the wounded tissues was recently proposed to trigger several different systemic signal transduction pathways via glutamate-like receptors (GLRs). However, the role of another important compound released from cells during wounding (i.e., extracellular ATP; eATP) in triggering systemic responses is not clear. Here we show that eATP that accumulates in wounded leaves and is sensed by the purinoreceptor kinase P2K is required for the activation of the ROS wave during wounding. Application of eATP to unwounded leaves triggered the ROS wave, and the activation of the ROS wave by wounding or eATP application was suppressed in mutants deficient in P2K (i.e., p2k1-3, p2k2, and p2k1-3p2k2). In addition, the expression of several systemic wound response transcripts was suppressed in mutants deficient in P2K during wounding. Our findings reveal that in addition to sensing glutamate via GLRs, eATP sensed by P2Ks is playing a key role in the triggering of systemic wound responses in plants.One sentence summaryExtracellular ATP plays an important role in triggering the ROS wave and systemic transcriptomics responses during wounding.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3