Programmable eukaryotic protein expression with RNA sensors

Author:

Jiang Kaiyi,Koob Jeremy,Chen Xi Dawn,Krajeski Rohan N.,Zhang Yifan,Villiger Lukas,Zhou Wenyuan,Abudayyeh Omar O.,Chen Fei,Gootenberg Jonathan S.

Abstract

AbstractThe diversity of cell types and states can be scalably measured and defined by expressed RNA transcripts. However, approaches to programmably sense and respond to the presence of specific RNAs within living biological systems with high sensitivity are lacking. RNA sensors that gate expression of reporter or cargo genes would have diverse applications for basic biology, diagnostics and therapeutics by enabling cell-state specific control of transgene expression. Here, we engineer a novel programmable RNA-sensing technology, Reprogrammable ADAR Sensors (RADARS), which leverages RNA editing by adenosine deaminases acting on RNA (ADAR) to gate translation of a protein payload on the presence of endogenous RNA transcripts. In mammalian cells, we engineer RADARS with diverse payloads, including luciferase and fluorescent proteins, with up to 164-fold activation and quantitative detection in the presence of target RNAs. We show RADARS are functional either expressed from DNA or as synthetic mRNA. Importantly, RADARS can function with endogenous cellular ADAR. We apply RADARS to multiple contexts, including RNA-sensing induced cell death via caspases, cell type identification, and in vivo control of synthetic mRNA translation, demonstrating RADARS as a tool with significant potential for gene and cell therapy, synthetic biology, and biomedical research.One Sentence SummaryA new technology utilizing ADAR mediated RNA-editing enables robust reprogrammable protein expression based on target RNA transcripts in mammalian cells, leading to broad applications in basic science research, cell engineering, and gene therapy.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3