Development and External Validation of a Mixed-Effects Deep Learning Model to Diagnose COVID-19 from CT Imaging

Author:

Bridge Joshua,Meng Yanda,Zhu Wenyue,Fitzmaurice Thomas,McCann Caroline,Addison Cliff,Wang Manhui,Merritt Cristin,Franks Stu,Mackey Maria,Messenger Steve,Sun Renrong,Zhao Yitian,Zheng Yalin

Abstract

AbstractObjectivesTo develop and externally geographically validate a mixed-effects deep learning model to diagnose COVID-19 from computed tomography (CT) imaging following best practice guidelines and assess the strengths and weaknesses of deep learning COVID-19 diagnosis.DesignModel development and external validation with retrospectively collected data from two countries.SettingHospitals in Moscow, Russia, collected between March 1, 2020, and April 25, 2020. The China Consortium of Chest CT Image Investigation (CC-CCII) collected between January 25, 2020, and March 27, 2020.Participants1,110 and 796 patients with either COVID-19 or healthy CT volumes from Moscow, Russia, and China, respectively.Main outcome measuresWe developed a deep learning model with a novel mixed-effects layer to model the relationship between slices in CT imaging. The model was trained on a dataset from hospitals in Moscow, Russia, and externally geographically validated on a dataset from a consortium of Chinese hospitals. Model performance was evaluated in discriminative performance using the area under the receiver operating characteristic (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). In addition, calibration performance was assessed using calibration curves, and clinical benefit was assessed using decision curve analysis. Finally, the model’s decisions were assessed visually using saliency maps.ResultsExternal validation on the large Chinese dataset showed excellent performance with an AUROC of 0.936 (95%CI: 0.910, 0.961). Using a probability threshold of 0.5, the sensitivity, specificity, NPV, and PPV were 0.753 (0.647, 0.840), 0.909 (0.869, 0.940), 0.711 (0.606, 0.802), and 0.925 (0.888, 0.953), respectively.ConclusionsDeep learning can reduce stress on healthcare systems by automatically screening CT imaging for COVID-19. However, deep learning models must be robustly assessed using various performance measures and externally validated in each setting. In addition, best practice guidelines for developing and reporting predictive models are vital for the safe adoption of such models.StatementsThe authors do not own any of the patient data, and ethics approval was not needed. The lead author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported, that no important aspects of the study have been omitted, and that any discrepancies from the study as planned (and, if relevant, registered) have been explained. Patients and the public were not involved in the study.FundingThis study was funded by EPSRC studentship (No. 2110275), EPSRC Impact Acceleration Account (IAA) funding, and Amazon Web Services.SummaryWhat is already known on this topicDeep learning can diagnose diseases from imaging data automaticallyMany studies using deep learning are of poor quality and fail to follow current best practice guidelines for the development and reporting of predictive modelsCurrent methods do not adequately model the relationship between slices in CT volumetric dataWhat this study addsA novel method to analyse volumetric imaging data composed of slices such as CT images using deep learningModel developed following current best-practice guidelines for the development and reporting of prediction models

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3