Does the use of prediction equations to correct self-reported height and weight improve obesity prevalance estimates? A pooled cross-sectional analysis of Health Survey for England data

Author:

Scholes ShaunORCID,Ng Fat LindaORCID,Moody AlisonORCID,Mindell Jennifer SORCID

Abstract

Objective: Adults typically overestimate height and underestimate weight compared with measured values, and such misreporting varies by sociodemographic and health-related factors. Using self-reported and interviewer-measured height and weight, collected from the same participants, we aimed to develop a set of prediction equations to correct bias in self-reported height and weight, and assess whether this adjustment improved the accuracy of obesity prevalence estimates relative to those based only on self-report. Design: Population-based cross-sectional study. Participants: 38,942 participants aged 16+ (Health Survey for England 2011-16) with non-missing self-reported and interviewer-measured height and weight. Main outcome measures: Comparisons between self-reported, interviewer-measured (gold standard) and corrected (based on prediction equations) body mass index (BMI in kg/m2) including (i) difference between means and obesity prevalence, and (ii) measures of agreement for BMI classification. Results: On average, men overestimated height more than women (1.6 and 1.0cm, respectively; p<0.001), whilst women underestimated weight more than men (-2.1 and -1.5kg, respectively; p<0.001). Underestimation of BMI was larger on average for women than for men ( 1.1 and 1.0kg/m2, respectively; p<0.001). Obesity prevalence based on self-reported BMI was 6.8 and 6.0 percentage points (pp) lower than that estimated using measured BMI for men and women, respectively. Corrected BMI (based on models containing all significant predictors of misreporting of height and weight) lowered underestimation of obesity to 0.8pp in both sexes and improved the sensitivity of being classified as obese over self-reported BMI by 15.0pp for men and 12.2pp for women. Results based on models using age alone as a predictor of misreporting were similar. Conclusions: Compared with self-reported data, applying prediction equations improved the accuracy of obesity prevalence estimates and increased sensitivity of being classified as obese. Including additional sociodemographic variables does not add enough predictive power to justify the added complexity of including them in prediction equations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3